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I. INTRODUCTION
A. THE PROBLEM

An efficient procedure is developed in this report for analyzing
scattering of an electromagnetic-plane wave from a homogeneously loaded
rectangular cavity recessed in a perfectly conducting ground plane. The
analysis is performed for the two-dimensional geometry shown in Figure
1.1. The interest in this work stems in large part from the significant
radar cross section (RCS) contribution of such geometries. Of special
interest are loaded and unloaded notch geometries, in which the width
and depth of the rectangular cavity are small to moderately large in

terms of the wavelength, and also wide shallow cavities in which the
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Figure 1.1. Electromagnetic fields incident on a loaded cavity recessed
in a ground plane.




width of the cavity is large in terms of the wavelength while the depth
is a fraction of a wavelength. The latter geometry is of particular
interest because of its its application to surface wave antennas, and to
arrays of dielectric covered slots.

The notch geometry is analyzed by a conventional numerical moment
method technique cast into a particular efficient form. The wide
shallow cavity, because of its large electrical size, cannot be
efficiently analyzed by the same technique. Thus, a hybrid version of
the moment method is developed for this geometry which results in a
considerable savings of CPU time compared to the conventional moment

method.

B. PREVIOUS RESEARCH

We consider first some previous work done on problems related to
the scattering of a plane wave from 2-D dielectric loaded notch
geometries. In each of these solutions the moment method [1] was
emplnyed to solve an integral equation involving the equivalent magnetic
current in the aperture. Because of the relatively small electrical
size of the notches conventional moment method techniques were used.
Richmond [2] solved the problem of a dielectric loaded notch recessed in
a perfectly conducting circular cylinder by expanding the fields in the
dielectric in a set of cylindrical modes and then applying Galerkin's
method to determine the aperture fields. Kautz, Pathak and Peters [3],

as well as Wang [4] considered the geometry of a dielectric loaded gap
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in a thick perfectly conducting screen. They determined the equivalent
magnetic current (in both the upper and lower apertures) by employing
the moment method in conjunction with the multiple scattering method.
By placing an impedance wall in the lower aperture and assigning to it
an impedance of zero, they are ahle to treat a loaded notch geometrys
However, this method of solution for the notch problem is not very
efficient, primarily because of the added complexity resulting from the
formulation which allows one to treat the more general case of loaded
gaps in thick screens.

We now consider some relevant previous research done on problems
related to loaded wide shallow cavities. Pathak and Kouyoumjian [5]
solved the canonical problem of surface wave diffraction by a truncated
dielectric slab recessed in a perfectly conducting gound plane. They
restricted their analysis to a lossless dielectric slab able to support
only the TM, surface wave. The reflected and diffracted fields are
expressed in terms of the geometrical theory of diffraction (GTD) T61.
The surface wave reflection and diffraction coefficients are obtained
from a formally exact snlution employing a combination of the
generalized scattering matrix technique (GSMT) [71 and the Wiener-Yopf
procedure T81. This solution, although formally exact, requires
considerable computation. A more efficient solution, which can also
handle a discretely inhomogeneous portion of dielectric near the
truncation, is given by Chuang [9]. This solution employs a moment
method solution to an integral equation involving the equivalent

magnetic current at the air-dielectric interface. Because of the




semi-infinite geometry, it is necessary to use a hybrid moment method
[107, T117 solution in which the basis functions are pulses near the
truncation and in the inhomogeneous portion of the dielectric; whereas,
away from the truncation and inhomogeneous regions, the unknown surface
field is expressed in terms of the incident and reflected surface waves
together with the diffracted wave (which vanishes to first order on the
dielectric interface). The forms of the reflected and diffracted waves
are known and their amplitudes constitute unknowns to be determined. We
can use this solution in conjunction with reciprocity to determine the
lauching coefficient of a surface wave due to a plane wave incident on
the canonical geometry. However, in this situation, reciprocity will
not yield any information on the surface transition region which extends
a couple of wavelengths (and even farther for a plane wave incident at
grazing angles) from the truncation. This, coupled with the fact that
the semi-infinite portion of dielectric must be lossless, limits the
usefulness of that canonical problem in obtaining a solution to the
problem shown in Figure 1.1. In addition, the solutions of Pathak, et
al. and Chuang are only for an incident TM, surface wave; the other
polarization is not treated, simply because the TE} surface wave is
cutoff for the configuration considered by Pathak, et al. in [57.
Another solution relevant to the loaded shallow cavity problem is
given by Richmond [12] for scattering of a plane wave from thin
dielectric strips of infinite length; the electric field is parallel to
the edges of the strip. The field in the dielectric is expanded in a

sum of forced wave and two surface waves, with the amplitudes of these
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waves being determined by Galerkin's method. This solution is relevant
to the loaded shallow cavity problem because of the physical nature of
the basis functions. However, the presence of the perfectly conducting
surface in the case of the shallow cavity yields diffraction effects
that are significantly different from the diffraction characteristics of
the dielectric strip.

Finally, we mention a hybrid moment method solution to a problem
not related to that being considered in this report, but which well
illustrates the computational capabilities of the technique. Srikanth,
Pathak, and Chuang [137 employed a hybrid uniform theory of diffraction
(uTD) (147, (157, -moment method (MM) solution to analyze the plane wave
scattering from an infinite, perfectly conducting semi-circular
cylinder. A mixed basis expansion involving pulses near the edges and
UTD functions elsewhere is used for the unknown current on the cylinder.
The basis function amplitudes are then determined by point-matching.
Numerical results show excellent agreement with conventional pulse basis
expansions, and are obtained in a fraction of the CPU time of the latter
method. We point out, however, that the hybrid UTD-MM is most
applicahle to a particular geometry when the diffraction characteristics
(i.e., UTD diffraction effects) of the canonical features of that
geometry are well understood.

In this thesis an efficient conventional moment method solution is
presented for the scattering of a plane wave from a notch geometry and a
very efficient hybrid moment method solution is presented for the

special case of loaded wide shallow cavity. For the notch problem the




equivalent magnetic current in the aperture is expanded in a set of
parallel-plate waveguide modes in which each mode is an entire domain
basis function across the aperture. The unknown field is only over the
extent of the aperture because the Green's function chosen in the
formulation of the integral equation for the unknown in this geometry is
comprised of two terms, one for a half-space with a perfectly conducting
ground plane, and the other for a loaded, fully-enclosed, perfectly
conducting cavity. Galerkin's method is used to determine the mode
amplitudes. Only 3-4 modes per free-space wavelength are needed for a
converged solution, as compared to the 10-20 pulses or piecewise
sinusoids per wavelength that are usually necessary if subsectional
basis functions were used. By using an appropriate form of the cavity
Green's function, the cavity contribution to an individual impedance
matrix element is arranged into a closed-form term plus a highly
convergent summation. In fact, when using the waveguide mode basis
functions, the closed-form contribution alone suffices. This, in
addition to an evaluation of the half-space contribution employed by
Richmond [12], yields a very efficient matrix fill. Excellent agreement
has been found between the modal basis expansion presented here and a
standard pulse basis solution. In addition, the modal basis solution
was observed to be several times faster than the pulse basis solution,
Practically speaking, the modal basis solution represents a
cost-effective solution (on a VAX 11/780) to scattering from recessed

rectangular cavities of width < 25 wavelengths and of arbitrary depth.




Because of the special interest in dielectric covered antenna
cavities, a separate solution was performed for the wide and shallow
loaded cavity geometry. By 'wide and shallow' it is meant that the
cavity width is greater than several wavelengths and the cavity depth
and loading are such that at most only one surface wave mode exists.

The same integral equation and Green's functions are used as for the
previous discussion, but a different set of basis functions is employed.
In this hybrid moment method solution the equivalent magnetic current in
the cavity aperture is expanded as a forced wave and two surface waves
(as in [127) plus several additional basis functions that describe
transition effects which are most significant near the cavity edges.
Again, Galerkin's method is employed, but now the number of unknowns
remains almost constant (< 10) regardless of the cavity width. Because
the transition effects are described via a choice of exponentia)l
functions, the computation of the impedance matrix is not significantly
different from that of the modal basis solution. The result is an
extremely efficient solution for the wide and shallow loaded cavity.
Good backscatter results have been obtained for the magnetic field
parallel to the cavity edges for which case the TM, surface wave always
exists, and when the cavity depth is nearly equal to or less than 0.1
wavelengths, For the other polarization, i.e., when the electric field
parallel to the cavity edges, the lack of a surface wave mode in the
dielectric for shallow cavities causes the hyhrid moment method solution
to he less accurate at grazing angles than the corresponding solution

for the T™M polarization. For both polarizations the hybrid basis




solution is far more computationally efficient for wide apertures than

is the modal basis solution.

C. FORMAT

In Chapter II, the integral equations involving the equivalent
magnetic current in the aperture are derived. In Chapter III, the
moment method solution to the integral equations is described. In
Chapter 1V, numerical results for specific examples are presented and
discussed. In Chapter V, the conclusions are stated.

A time convention of exp(jwt) is assumed and suppressed; only here

does t refer to time,




I1. [INTEGRAL EQUATIONS FOR THE APERTURE FIELDS

A. LOADED CAVITY RECESSED IN A PERFECTLY CONDUCTING GROUND PLANE

Consider electromagnetic fields incident on the 2-D geometry shown
in Figure 2.1. The source of the incident fields is assumed to be in
region I as shown in the figure. The material in region Il is assumed
to be linear, homcgeneous, isotropic and time-invariant and may be
either lossy or lossless. The problem considered here is the
determination of the fields scattered in region 1 due to a known source

which is also in region I.

REGION I

PERFECT
ELECTRIC
CONDUCTOR

REGION II

Figure 2.1. An arbtrary loaded cavity recessed in a perfectly
conducting ground plane.




Since the geometry is 2-D, the general vector problem can be easily
reduced to 2 scalar problems. The incident fields may be decomposed
into 2 polarizations: (1) the electric field vector parallel to the
conducting edge, denoted as the 'soft polarization' (subscript 's')
case, and (2) the magnetic field vector parallel to the conducting edge,
denoted as the 'hard polarization' (subscript 'h') case. Thus, we
define the total scalar fields to be
:_Ez (x,y)—

H, (x,y) . (2.1)

ug (x,y) =
h

Integral equations, in which the unknown happens to be the electric
fields only within the aperture at y=0 and |x]| < a, may he derived in a
straight-forward manner by the application of Green's second identity
[167. The details of this derivation are deferred to Appendix A; here
we present only the resulting equations and their interpretation in
terms of the equivalence principle. These integral equations are later
solved by a moment method procedure 171 using a special set of only a
few select hasis functions as discussed in Chapter III,

For the total fields in region I, we employ the equivalence
principle [16] to replace the aperture by an equivalent magnetic surface
current source distribution just above a perfectly conducting surface
which short-circuits the aperture. Then, convolving this equivalent
source distribution with respect to a perfectly conducting half-space
Green's function, j/2 HéZ) (k|p-p']), we find the fields in region I

(y>0) to be
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us (x,y) = ”% (x,y) + ug (x,y)

| 3 . - -
a 3y (372 W2 5507 - ug(xt oy
[ dx' (2.2)
-a - . dup,
'—J/z H£2) (k'p_ol') . _a—yT (xl’yl) { y|=0+
where u;’r are the incident and reflected fields of the equivalent
h
(short-circuited) problem, and where
le-o'] = V(xox)2 + (y-y')2 - (2.3)

For the fields in region II (cavity region) we employ the
equivalence principle to replace the aperture by an equivalent magnetic
surface current source distribution just below the short-circuited
aperture. Then, integrating the equivalent sources over the Green's
function, Ga, for the short-circuited cavity, we find the fields in

region I1 (y<0) to be

|
'_§§3 (x,y,5x',y") = u (x'.y')l |
| U
I I
|
l

u_ (x,y) =% f dx . (2.8)
h -a 3un -
Gy Oayixtyy') »ogym (xh,y') | y'=0

The cavity Green's functions, Gg, are discussed in the next section.

The equivalent source dist?ibutions of Equations (2.2) and (2.4)
may be readily interpreted as equivalent magnetic currents by noting
that us(x',y');y.=0 is theaz-directed aperture electric field for the
TM or soft case and that 3,7 Uh(x WY ){y V20 is proportional to the

x-directed aperture electric field for the TEz or hard case,

11




respectively. The equivalent magnetic surface currents are then
ohtained from

P.ng = E X ;t (2.5)

where ; = 9 for region I and n = -; for region II. The equivalent
currents for the 2 regions, denoted by ﬁl and ill’ are qualitatively
shown in Figures 2.2a and 2.2b for the hard and soft polarizations,
respectively., Note that for the hard polarization the current is

z-directed, while for the soft polarization it is x-directed.

My

e

OO0 OO e
X X Q8 ]

My

ta) Equivalent magnetic currents for hard polarization.

{h) Equivalent magnetic currents for soft polarization.

Figure 2.2, Equivalent magnetic current sources in the aperture region
of a cavity recessed in a ground plane.
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To arrive at integral equations in which the unknowns are the
aperture electric fields, we equate the fields as given by Equations
(2.2) and (2.4) in the aperture. Continuity of tangential E and H

fields across the aperture implies the following relations:

us (x,y=0") = ug(x,y=0) (2.6a)
dUp 1 3up
’ay—(x,y)‘y=o+ = ?rsy—(x.y)lyzo- (2.6b)
dug 1 9dug
W‘(x,y)!y=o+ = ur ?T(X'Y)lpo‘ (2.6c)

Since we ultimately will calcuate the fields in region I (y>0), the
resulting integral equations are expressed in terms of the aperture

fields at y=0*. For the hard polarization we obtain the integral

equation
a dup(x',y")
£ ax' [3/2 W8 (kix=x'1) - €, 6,(x.x")] 35" y=0*
= =2 u;(x,O) . (2.7)

Note that in deriving Equation (2.7) we have used Equations (2.6a)
and (2.6b) to enforce the continuity of tangential H and tangential E,
across the aperture, respectively.

To derive an integral equation for the soft polarization we take %y
of Equations (2.2) and (2.4) and equate the results in the aperture.

The continuity relations (2.6a) and (2.6c) are applied to ensure

13




continuity of tangential E and tangential ﬁ, respectively, The

resulting integral equation is

a = @ H§2)(k|5-5‘|) 1 % G (xyx',y') -
% gy y'=0* T ur ayay’ ‘y'=0'
y=0++ 'y:O"'
- - |
. ' 0) dx' = a | r
ug(x*,0) dx' = -3y g us(x,y) + us(x,y) l y=0 (2.8)
|

3
The derivative ay Was necessary for the enforcement of continuity of

tangential ﬁ.

Once Equations (2.7) and (2.8) have been solved for their
respective equivalent source distributions, the scattered fields in
region I may be determined from Equation (2.?) with the short-circuit
terms left out. Since we are primarily interested in the far-zone

fields, the asymptotic approximation to the Hankel function [17]

, -Jkp
12 (ko) ~ VB 5" -

"O- s

is used along with the usual approximate form of |p-p'| 167
'— - -3 » —‘

p - pep in phase
) in amplitude l

lo-p") =

The scattered fields are then

I8 —sksine—y endke 4 ; ug(x*) }
us(p’¢) = ’?ZN—T ‘ 1 l v/p— f eJkX cosS¢ ' 3Uh(X') l dx’
h -2 | 3y" |

14
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B. LOADED RECTANGULAR CAVITY RECESSED IN A PERFECTLY
CONDUCTING GROUND PLANE

In this section we consider the specific problem to be solved;
namely, the scattering of a plane wave from a loaded rectangular cavity
recessed in a perfectly-conducting ground plane, as shown in Figure 2.3.

For plane wave incidence, the incident fields may be written in the
form
- -

°

Ho

u%(x.y) - eikxcose’ + Jkysing (2.10a)

Then for the equivalent short-circuited problem, the incident fields are
still given by Equation (2.10a), whereas the fields reflected from the

short-circuit are given by

=t — . . . .y
ug(x,y) - Ho ekacos¢ - jkysing (2.10b)
h 0
| i
Ez H;
z -0 K
2 r7gvﬂrrvﬂﬂnr y=0
.p, / ceb

Figure 2.3. Plane wave incidence on a loaded rectangular cavity
recessed in a ground plane.
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A rigorous derivation of the Green's function for the
short-circuited rectangular cavity is given in Appendix B. Here we
present the governing relations and the explicit form of Gg for the

h
rectangular cavity. The Green's function must satisfy the differential

equation
32 32
(3xZ + 3yZ + &2 ew) Gﬁ(x,y; x'y') = -8(x-x") &(y-y") (2.11a)

for all (x,y) and (x',y') within the cavity, and the boundary conditions

S

3 | = O on C (2.110)
| 3h _

6

where C is the contour which defines the enclosed cavity and 8 is the
inward normal on C, For the geometry of Figure 2.3 the cavity is
defined by y=-b, y=0 and x=-a, x=a.

We solve Equation (2.11a) by separation of variables and an
application of the boundary condition (2.11b). Note that the boundary
conditions may he applied in two ways: (1) first apply BC's at x=-a,
x=a then at y=-b, y=0; or (2) first apply BC's at y=-b, y=0 then at

=-a, x=a,

The first approach may bhe interpreted as representing the Green's
functions, Gg, interms of the parallel plate waveguide modes propagating
in the * 9 d?rections and reflecting from the walls at y=-b, y=0. The
second approach may be interpreted as representing the Gg in terms

of the parallel plate waveguide modes propagating in the * ; directions

and reflecting from the walls at x=-a, x=a. For reasons of convergence

16
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(discussed in Chapter III), the latter approach is used in deriving the
cavity Green's functions. The resulting equations are

-1 ¥ csc2ya
—B-zzl Y Lcosy(2a-]x-x"|)-cosy(x+x"')]

G, (x,y;x",y")

« sin 7§ sin T (2.12a)
-1 ® c¢sc2?vya
Ghix,y:x',y') =% Y &, v [cosy(2a-|x-x'|)+cosy(x+x"')]
g=p 20 Y
LMy iny'
s €COS T/ COS ‘EJL‘ (2.12b)
where
k €ty - ( b) s gL <T xe(sr;fr) (2.13a)
o e b
{ -J \/( b) - Kew. > 7 Relew) (2.13b)
and
|~ =
T o (2.13c)
© 1 , %0

Note that the other representation of the Green's function is entirely
equivalent to Equation (2.12), hut is simply not as efficient for the
geometry and method of solution presented here.

Refore discussing the method of solution to the integral equations,
a note should be made concerning the aperture field edge conditions
inherent in a geometry such as that of Figure 2.3. These edge
conditions are significant since a solution for the aperture fields
should at least approximately meet them, It is noted that the edge

17




behavior can significantly affect the rest of the aperture field
distribution; especially for grazing and near-grazing angles of
incidence.

Hurd [187 considers the problem of field edge hehavior for a
conducting wedge in the presence of dielectric wedges. If we are
interested in the edge behavior of the aperture electric fields for the
geometryvof Figure 2.3, then the geometry of Figure 2.4 should be
relevant (assuming a non-vanishing cavity). For this geometry Hurd

derives the edge conditions

t

EZ = C1 0 (2.14a)
_ t-1
Ep =C, to (2.14n)
where
A
t = 7 cos (m) . (2.15)

Thus, for finite €., E, vanishes at the edge (p=0) and Ep hecomes

2z
infinite at the edge.

=

Figure 2.4. Geometry for consideration of edge conditions.
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I1I. SOLUTION OF INTEGRAL EQUATIONS BY THE MOMENT METHOD
A. THE MOMENT METHOD

The moment method [1] is a powerful and frequently used numerical
technique for solving integral and integro-differntial equations. It is
a method that transforms the integral equation into a matrix equation
which is then solved by matrix inversion.

The integral equations (2.7) and (2.8) are of the form

fb G(x,x') M(x') dx' = F(x) ,
a (3.1)
a < x,x'" <b .

where G is a known function or operator which constitutes the kernel of
the integral equation; F is a known forcing function, and M is the
unknown function to be determined. Note that for the problem
considered, M is an equivalent magnetic current, F is an incident field
(or its derivative), and G is related to the Green's function. The
first step in the moment method solution to Equation (3.1) is to expand
the unknown function M(x') in a series of basis functions (also called
expansion functions) with unknown coefficients. The basis functions may
be either subsectional, in which each function spans a subsection of the
domain of M(x'), or they may be entire, in which each function spans the
the entire domain of M(x'). Some examples of subsectional basis
functions are pulses and piecewise-continuous sinusoids. Examples of

entire basis functions include Fourier series and other modal
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expansions, traveling waves, and functions derived from the geometrical
theory of diffractions (GTD) [6] and its uniform version (UTD) [14]. In

this work we expand in a series of entire basis functions:
N
M(x') -} D, M, (x') , a<x'<b (3.2)
n=1
where M,(x) is a basis function and D, is the corresponding unknown
coefficient, Note that as N+ =, (3.2) can yield a formally exact
representation of M(x'). For N finite but large the representation is

approximate, but nearly-exact results are possible. Substituting (3.2)

into (3.1) and assuming that (3.2) is a uniformly convergent expansion,
N b
) D, | G(x,x") M (x') dx' = F(x) . (3.3)
n=1 a
As it stands, Equation (3.3) is a single equation in N unknowns.
To convert it to a set of N simultaneous equations in N unknowns, a set
of N weighting functions is chosen and applied to Equation (3.3) at N
locations in the domain of the weighting function. Thus the second step
in the moment method solution is the selection of a set of weighting
functions (also called testing functions).

Let {w(x), a < x < b} be a set of N weighting functions. Then, we

may write the weighted equations as

b b
1 0, af af G(x,x") M (x') W_(x) dx’ dx

Hne—=2

n

b
= [ FO W (x)dx , m=1,...,N (3.4)
a
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Examples of simple and effective weighting schemes are point-matching
and Galerkin's method. In point-matching the weighting functions are

simply delta functions,

Nm(x) = 6(x-xm) » A <xp<b . (3.5)

In Galerkin's method the weighting functions are identical to the basis

functions, i.e.,
Nm(x) = Mm(x) . (3.6)

Equations (3.5) and (3.6) separately constitute the only choices of
weighting functions considered in this work.

Equations (3.4) may be expressed in matrix form as

(Zn) [0,] = (4] (3.7)
where
b b
L., = af aj G(x,x') M (x') W (x) dx' dx (3.8)
b
Vo =aj F(x) W (x) dx . (3.9)

Note that (Z ] is the so-called impedance matrix and [v,] is the

voltage matrix. Finally, the unknown coefficients are determined from

= [Zmnl'l (v.] . (3.10)
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The accuracy of the results depends on the choice of hoth basis
functions and weighting functions. The basis functions should be chosen
so that Equation (3.2) can approximate the unknown current M(x') fairly
well, The edge conditions and G(x,x’') may place restrictions on the
useful choice of basis functions. The same restrictions may apply to
the weighting functions. Fortunately the moment method is a variational
procedure 11 and often yields good results for a wide range of basis
and weighting functions.

The moment method is generally considered to be a low-frequency
technique limited at present to objects < 10 wavelengths for two
dimensional problems, This limit is a computational one and is due to
the large number of unknowns required to accyrately model the currents
on large, complicated objects. For subsectional basis functions (such
as pulses) typically 10-20 unknowns per wavelength are neessary.
Appropriate entire basis functions can reduce this by a factor of 2 or
more, When the number of unknowns exceeds several hundred, the time and
cost required to invert the impedance matrix becomes exhorbitant and the
technique is no longer attractive.

In problems where one can identify the dominant physical mechanisms
contributing to the unknown current, a hybrid moment method [101,7111,
can be a powerful tool. Basis functions are chosen which incorporate
the mathematical form of the known physical mechanisms, More
traditional basis functions (e.g. pulses) may be used in locations
where the physics is not so well understood. The use of these hybrid or

traveling wave/GTD basis functions can yield efficient high-frequency
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solutions at a cost of increased mathematical complexity. Many
excellent examples of this hybrid or traveling wave/GTD approach to the
moment method exist in the literature as mentioned earlier.

B. SOLUTION FOR RECTANGULAR CAVITIES OF NARROW

TO MODERATE WIDTH AND ARBITRARY DEPTH

In this section we present a solution to the problem depicted in
Figure 2.3 which is valid for either loaded or unloaded rectangular
cavities of narrow to moderate width and arbitrary depth. This solution
requires approximately four unknowns per (free-space) wavelength across
the aperture, and is therefore limited to cavities of width ~ 25X or
less.

Entire basis functions are used with a Galerkin weighting scheme.
The basis functions are chosen to be the transverse portion of the
modes, both propagating and evanescent, of a parllel plate waveguide
with plates at x=-a and x=a. This choice of basis functions was also
made by Wang [4] in one part of his solution to the scattering by a slot
in a thick conducting screen.

The modes supported by a parallel plate waveguide are easily
determined from the 2-D scalar wave equation and the boundary conditions
at the walls., Expanding the unknowns in the integral Equations (2.7)
and (2.8) in terms of the transverse portion of these modes, we obtain

for the hard and soft polarizations, respectively,

dup N nn
3y (x') = ) D, cos 73 (a-x') (3.11)

n=0
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N nn '
us(x‘) =n21 Dn sin 73 (a-x') (3.12)

for -a < x' < a .

Note that the D, in (3.11) and (3.12) are in general different,
Applying Galerkin's method we determine the impedance and voltage
matrices from Equations (3.8) and (3.9). For the case of hard

polarization the results are
a a nn

mm
Z =_£ _£ G(x,x"') cos 37 (a-x') cos 77 (a-x) dx'dx (3.13)

jkxcoseo'

a m
Vi = =28, £ e cos 75 (a-x) dx (3.14)

where G(x,x') equals the quantity in brackets on the LHS of Equation

(2.7). Similarly, the results for the soft polarization are

a8 SN . AP . .
Zon = g g G(x,x"') sin 77 (a-x"') sin 37 (a-x) dx'dx (3.15)
3 jkxcoss' m
V, = 2jksing’ E0_£ e sin 37 (a-x) dx (3.16)

Where G(x,x') equals the quantity in brackets on the LHS of Equation
(2.8). Note that the impedance matrix is symmetric.

The integrals in the expressions for V, are easily evaluated;
however, the double integrals in the expressions for Iy, are
considerably more challenging. The mathematical details of this
evaluation are given in Appendix C. The double integrals of the Hankel
function terms in the total Green's functions are reduced to single

integrals by a rotation of coordinates (the so-called Popovich
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transformation). The single integrals are evaluated over the initial
part by numerical integration and the remaining part is evaluated
analytically by using the large-argument form of the Hankel function.

The double integrals of the cavity Green's functions, given by
Equations (2.12) and (2.13), can be evaluated in closed form, leaving
infinite sums. Specifically for this form of the cavity Green's
functions, portions of these infinite sums can be summed into closed
form. For the more conventional choice of Green's functions, as given
by Equations (B.22) and (B.23), such closed-form terms were not
obtained. This fact accounts for the significantly faster convergence
for the chosen cavity Green's functions. Only a few evanescent terms
are required to achieve numerical convergence of the remaining portion
of the sum,

We point out that the current representation given by Equation
(3.12) satisfies the edge condition (2.14a) in the sense that (3.12)
goes to zero for |x'|+a. Actually each basis function in (3.12)
vanishes at the edges of the aperture, a fact which greatly simplifies
the evaluation of Zy,. For the hard polarization the current
representation given by Equation (3.11) will not go to infinity at the
aperture edges as required by (2.14b), assuming a finite value of N.
However, (3.11) will approximate the edge condition well enough to yield
accurate results even with only four unknowns per wavelength.

Finally, the far-zone scattered fields in region I (y>0) are found

from Equations (2.9), (3.11) and (3.12) to be
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i /4 “k sin ¢—, e~Jke
s let) =Ty I T
N T2 . nm nmo
.nZO e sin(kcos¢ - 77)a i /2 sin(kcosé + 73)a
= nn + e n
1 kcosd - 73 kcosé + gg

(3.17)

C. SOLUTION FOR RECTANGULAR CAVITIES
OF LARGE WIDTH AND SMALL DEPTH

In this section we present a solution to the problem depicted in
Figure 2.3 which is valid for loaded rectangular cavities of large width
and small depth. The number of unknowns in this solution is independent
of the width of the aperture, but can depend on the depth of the cavity.
By small depth it is meant that the dielectric portion of Figure 2.3
will support at most one surface wave mode.

In the previous section, a solution involving a current expansion
in parallel plate waveguide modes was presented. This solution will
also work for the present case of wide, shallow cavities, but it will
require many unknowns (3-4 per wavelength across the aperture). By
considering the physics of the wide, shallow cavity we can arrive at a
more efficient set of basis functions.

Consider the grounded dielectric slab shown in Figure 3.1. This
structure can support surface waves, incident and reflected geometrical
optics fields, plus other types of waves which we are not concerned with

here., For the case of plane wave incidence the total field in the
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region above the slab is simply the incident plus reflected geometrical
optics terms {since a plane wave cannot excite surface waves in an

infinite dielectric slab):

| o [eIK(y#p)sing o -dk(y+b)sine®)

UE (x,y) = { f‘o ;

0
eJkXCOS¢ (3.18)

where the reflection coefficient is [19]

joe. u, sing’ + h « tan (kbh)

Th =3 €. w. sing' - h + tan (kbh) (3.19)

j sing' -+ - _ot (kbh)

Ts 3 sing' - n + cot (kbh) (3.19)

and

h =/ er up = STnZ ¢ (3.20)

=i

GROUND PLANE

Fiqure 3.1. Scattering from an infinite dielectric slab on a ground
plane.
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Note that the reflection coefficient has a magnitude of unity, as we
would expect for an incident plane wave.

If we truncate the slab of Figure 3.1, then the diffration of an
incident plane wave at the ends of the slab will excite surface waves.

The z-components of hard and soft normalized surface waves are [16]

’ e'°y°iex ) , y»0 (3.21a)
u, = | cosaj(y+ s
" l__ cosajh  ° e BX 05 ys b (3.21b)
oY -18x , y>0 (3.22a)
ug = sinay(y+b) -§8x
_ sinapp € » 0>y>-b , (3.22)

where 'hard' and 'soft' are as defined by Equation (2.1). The surface

wave propagation constant, 8, is determined from

ay tan alh =ec.a (3.23a)

-a cot alb =ua {3.23b)

for the hard and soft polarizations, respectively, where

2 =k2e u_ -8 (3.24p)
Substituting Equations (3.24) into (3.23) yields a transcendental
equation in B, which is then solved by the Newton-Raphson method. From

Equations (3.23a,b) it may be shown that the first surface wave mode for

the hard polarization has no cutoff frequency. This is not true for the
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soft polarization, Thus even a very thin grounded dielectric slab will
support a surface wave only for a hard-polarized incident field.

We now return to the geometry of Figure 2.3 and consider a suitable
choice of basis functions. From the above discussion it seems
reasonable to assume that a geometrical optics type of field (also
called a forced wave inside the dielectric), such as Equation (3.18),
will make a significant contribution to the aperture field. 1In
addition, if we assume the dominant surface wave mode is present, then
terms such as (3.21) and (3.22) are also important. Thus far, our

expansion for the aperture electric fields is

|_3uh "'
3y (x) jkxcosé ' -jBx jBx
= D1 e’ + 02 e IPX 4 D3 e’ : Ix]<a (3.25)
u (x)
_s -

where 8 depends on polarization. The coefficients Dy and D3 include the
multiple reflections of the surface waves from the end walls at x=-a and
x=a. Richmond {12] employed a very similar expansion in his moment
method solution to scattering by a thin dielectric strip (E,
polarization only).

For this problem considered here the current representation (3.25)
does not properly account for the aperture physics near the end walls.
The transition region exists between the edges of the aperture and the
region where the surface waves hecome established. This transition
region typically extends about one wavelength into the aperture from the

edges, except for near grazing angles of incidence where it could
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possibly extend over the entire aperture region if the aperture is only
moderately wide.

To account for the physics of the transition regions additional
basis functions were chosen which were entire but of importance only
near the edges. To keep the mathematical complexity to a minimum, a set
of exponential functions which decay away from the edges were chosen.

Thus the current expansion now becomes

Tdup
3y (%) . . : .
y - n, edkxcose’ o -jBla-x) o -jB(a+x)
1 2 3
g (x|
-3 - -5 +
£ 0. d jay(a-x) ‘D e jqy(a+x)
4 5
-J a- -j a+t+
+ D d jagla-x) D, e Jaglasx) (3.26)

where the g are empirically determined complex numbers with a negative
imaginary component. A discussion of suitable values for the gj is
given in the next chapter; typically there are several transition terms.
Note that the surface waves and the transition terms in Equation (3.26)
are written in a form that indicates that these terms emanate from the
edges of the aperture, whereas the forced wave term is not written in
such a form,

Recall that ug(x) must satisfy the edge condition (2.14a). Thus,
for the soft polarization, Equation (3.26) must be set equal to zero at

=-a and x=a. !pon doing this we may then solve for two of the N

unknown coefficients in terms of the remaining coefficients, thus
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reducing the number of unknowns from N to N-2. The resulting form for a

given basis function for the soft polarization becomes

e'jO(a-x) + ej(hna+an) + b e-JO(a+X)

n n , (3.27)

Mn(x) = a

where h, and f, are the appropriate values of kcos¢, B, and qj shown in
Equation (3.26), and 0 is an empirically determined complex number with

a negative imaginary component (like the q;), and where

{(h--0) sin(fn+0)a
o a0y
an = "'2‘] e l-e-4‘]oa (3.283)
sin{(f _-0)a
S |_e-4i0a . (3.

A value of O is chosen so that the basis function given by Equation
(3.27) goes to zero rapidly near the edges of the aperture; a discussion
of actual numerical values is deferred to the next chapter, The
corresponding turm of a given basis function for the hard polarization
is

M (x) = ol {2+ Fnx) . (3.29)

Apnlying Galerkin's method we determine the impedance and voltage
mat-~ices from Equations (3.8) and (3.9). For the hard polarization the
results are

a a j(hpa+fox') ej(hma+fmx)

Zmn = I j G(X,X') e
-a -2

dxldx (3-30)
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m

a v j(hpa+fmx)
Vo= -2 [ eikxcose! J(hma+fmx) (3.31)

-a
where G(x,x') equals the quantity in brackets on the LHS of Equation

(2.7). Similarly the results for the soft polarization are

7 = fa fa 6lxux") [ e'jO(a-x') + ej(hna+fnx') ‘b e_jo(a+x-)]

moCl s a" n
-j0(a- j (hma+fax) o3
- [a_e jota-x) | J(hma*fax) b e J(a+x)] dx'dx (3.32)
a . . Ciala (heasf
Vo = -2jk sing' E J elkxcose’, [a, e jola-x) , J(Mna+fmx)
-a
+ b, @700 g (3.33)

where G(x,x') equals the quantity in brackets on the LHS of Equation
(2.8). Note that the impedance matrix is symmetric.

Again the expressions for V, are easily evaluated. Comparing the
above expressions for the impedance matrix elements with those of the
waveguide mode current expansion, given by Equations (3.13) and (3.15),
we see that in both cases the basis and weighting functions may be
expressed as exponentials. Thus, the evaluation of Equations (3.30) and
(3.32) is not fundamentally different from that of Equations (3.13) and
(3.15).

Finally the far-zone scattered fields in region 1 (y>0) are found

from Equations (2.9), (3.27) and (3.29) to be
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-e°j n/4 e'jkp N2
ug(p,0) =~y (-ksing) =2 nzl ]
sin(kcosé+Q)a ihna s1n(kcos¢+fn)a
kcos¢+Q kcos¢+fn
j sin(kcos¢-Q)a
+b e-d0a
n kcos$=-0
for the soft polarization, and
- “/4 -.kp l_
= e e 2 N-2 | -jhpa
uh(0,¢) = ',-Z-n—k- O fp- - nzl . o .

for the hard polarization.
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IV. NUMERICAL RESULTS AND DISCUSSION

A. CAVITIES OF ARBITRARY DEPTH AND NARROW TO MODERATE WIDTH
RECESSED IN A GROUND PLANE

In this section we consider the EM scattering from loaded or
unloaded cavities of narrow to moderate width and recessed an arbitrary
distance in a ground plane. By "narrow to moderate width" it is meant
that the aperture width is < 10 A, where A is the free-space wavelength,

Before discussing the numerical results in this section, it is
important to introduce an explanation of the titles, labels and variable
names that accompany each of the computer plots pertaining to the

numerical calculations presented below.

TITLES OF PLOTS

PMH = pulses/point matching solution for hard polarization

NOTCHH, NOTCHS = hybrid basis solution for hard, soft
polarization

(ignore the .TEST appearing in some titles)

COORDINATE LABELS

BACKSCATTER = monostatic backscattered field i%z or Hy)
magnitude multiplied by the factor vnk, where k is
the free-space wavenumber.

MAGNITUDE, PHASE = equivalent current magnitude and phase
PATTERN MAGNITUDE = bistatic scattered field (E, or Hy)
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VARIABLES COMMON TO ALL SOLUTIONS

WINTH = aperture width, A (free-space)
DEPTH = cavity depth, A

i ERR = Re (e,) in the dielectric loading of the cavity
ERI = Im (e,) in the dielectric loading of the cavity
URR = Re (up) in the dielectric loading of the cavity
URT = Im (u,.) in the dielectric Toading of the cavity
PHP = ¢', 0° < ¢' < 90° (4'=90° => normal incidence.)

VARIABLES SPECIFIC TO A SOLUTION

PMH = MM solution using pulse expansion and point matching
in the aperture only for the hard case

NMODE = Number of modes in the cavity Green's function
(modes propagating in ¢ y direction)

PW = Pulse width, A

N1,N2 = Number of pulses counting from x=-a, x=+a.

NOTCHH ,NOTCHS = Hard and soft case MM solutions using modal
expansion in waveguide aperture respectively

NZ1,NZ = Number of unknown modal basis functions for hard,
soft polarization

NMNODE = Number of terms in reduced form of cavity Green's
function (modes propagating in * x)

DX = 2 * integration step of numerical portion of

integration, A
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EWAVH3,EMAVS = Hard and soft case MM solution using a hybrid
traveling wave expansion in the aperture, respectively.

NMODE = Same as for NOTCHH,NOTCHS

DX = Same as for NOTCHH,NOTCHS

NFW = Number of forced wave basis functions

NSW = 1/2 number of surface wave basis functions
NEW = 1/2 number of transition term basis functions

We first consider results for the hard polarization. Figure 4,1
compares a pulse/point-matching solution for the monostatic scattered
magnetic field (H,) from a loaded recessed cavity of width=1i,
depth=0,1) to the Galerkin solution employing entire waveguide mode
hasis functions (Chapter III, Section B). The pulses/point-matching
solution employs 20 pulses of width=0,05x and 10 modes in the cavity
Green's function (using the form given by Equation (R.22b); the CPU time
on a PRIME computer was 49 seconds. The modal basis solution employs 5
waveguide modes, no modes in the expression for 7y of (C.12) (the
closed-form portion of Z; proved to be sufficient), and a numerical
integration step of 0.05\; the CPU time was 15 seconds. Note that bhoth
solutions were verified to have converged. Similar resuits are given in

Figure 4.2 for a depth=10.1A. Again, there is good agreement between
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Fiqure 4,1, Backscattering by a notch type cavity in a ground plane,.
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Figure 4.2. BRackscattering by a deep notch cavity in a ground plane.
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the solutions. Note that even for the deep cavity, no modes were
required for the computation of 7).

Now consider the soft polarization. Figures 4.3 and 4.4 show the
monostatic scattered electric field (E,) computed from the modal basis
method for cavities of depth = 0.1\ and 10.1x, respectively. This
solution employs 4 waveguide modes, no modes in the expression for L
(again, the closed-form portion of 7| was sufficient), and an
integration step of .05\, Bistatic scattered field equivalent currents
and far-field patterns computed with the modal basis solution were
compared with a moment method solution [4] employing piecewise
continuous sinusoids and Galerkin's method. Good agreement was observed
for the two solutions for normal incidence. There appears to be some
question as to the use of the computer codes in [4] for grazing angles;
hence, this comparison has not been made at this time.

B. LOADED SHALLOW CAVITIES OF LARGE WIDTH

RECESSED IN A GROUND PLANE

In this section we consider scattering from loaded shallow cavities
of large width (> 5 ) recessed in a ground plane. By "shallow" it is
meant that at most one surface wave is supported in the dielectric.

This condition places constraints on the depth of the cavity and the

electrical properties of the dielectric medium according to Equations

(3.23) and (3.24). Table 4.1 shows surface wave propragation constants
as a function of dielectric thickness (i.e., cavity depth) for a

dielectric with €r2,5, up=1,0. A dash (-) indicates that a surface wave

is not supported.
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TABLE 4.1

HARD AND SOFT SURFACE WAVE PROPAGATION CONSTANTS
FOR A GROUNDED DIELECTRIC WITH €,.=2.5, ur=1.0
AS A FUNCTION OF DIELECTRIC THICKNESS

.05 2 6.399 -1 --

.10 6.789 --
.15 7.442 -
.20 8.105 6.288
.25 8.599 6.630

Figure 4.5 compares a pulses/point-matching solution to the modal
basis solution for the monostatic scattered magnetic field from a loaded
recessed cavity of width=5x, depth=,05x, £.=2.5. The
pulses/point-matching solution employs 50 pulses of width=.10A and 40
modes in the cavity Green's function; the CPU time was 9 minutes, 47
seconds. The modal basis solution employs 21 waveguide modes, only the
closed-form term in 7}, and an integration step of .05\; the CPU time
was 1 minute, 10 seconds. The modal basis solution was observed to
converge. Due to lack of disk space we were unable to verify the

convergence of the point matching solution.
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Also shown in Figure 4.5, at ten degree intervals, is the solution
obtained using the basis functions discussed in Section C of Chapter
I[II. This solution employs a forced wave, two surface waves, and 8
transition terms for a total of 11 basis functions, and is valid for any
cavity width larger than a few wavelengths. The surface wave
prupagation constant for this geometry is given in Table 4.1. The

transition term "propagation" constants were chosen to be of the form

qi = k - jSi 'Y (4.1)

where the q; are defined in Equation (3.26), k is the free-space
wavenumber, and the s; are empirically determined attenuation constants.
It was found from numerical experimentation that allowing the s; to take
on the four integer values

s; = 5,6,7,8 , (4.2)
resulted in accurate monostatic scattered fields for shallow cavities.
Actually, the nonostatic scattered field is somewhat insensitive to the
specific qj chosen, as long as the corresponding basis functions are
insignificant a wavelength or so from the aperture edge. The CPU time
for the points shown in Figure 4.5 was 1 minute, 16 seconds, which is
similar to the CPU required for the modal basis solution. Even though
fewer unknowns are required in the hybrid basis solution (11 versus 21
in the modal basis solution), one of the basis functions, the forced
wave, is a function of the angle of incidence, as can be seen from
Equation (3.26). Thus, a row of the impedance matrix must be recomputed
and the resulting matrix inverted for each new angle of incidence, In

the modal basis solution the impedance matrix is computed and inverted
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only once. The advantage of the hybrid basis solution is, of course,
that only 11 unknowns are required regardless of cavity width.

Figures 4.6 and 4.7 compare the hybrid and modal basis solutions
for the equivalent magnetic aperture current and bistatic scattered
field pattern for a plane wave normally incident on the geometry of
Figure 4.5, except that the cavity depth=0.10A. The required CPU for
the modal basis solution was 54 seconds; versus 28 seconds for the
hybrid basis. Figures 4.8 and 4.9 make the same comparison for grazing
incidence (9'=0°). Note that excellent agreement between the two
solutions even for grazing incidence.

Figures 4.10 to 4.13 compare the monostatic scattered field
obtained from the hybrid basis solution at ten degree intervals to the
modal basis solution for cavity depths of .10A, .15X, .20A, and .25 A.
Good agreement is obtained everywhere except for the grazing incidence
region for a depth of .25\, the largest depth which was tried. Such
variations might yield good results for a particular geometry, but would
not always apply to other geometries. Thus, a consistent method for
choosing exponential-type transition terms was not found for the deeper
cavities, i.e., for depth=.2Cx and .25\, In short, an accurate and very
efficient hybrid solution for the hard polarization was found for
cavities with depths less than .15\ and of arbitrary width.

Consider now the soft polarization results of plane wave scattering
from the same geometry considered in the above hard polarization

analysis. From Table 4.1 one sees that surface waves do not exist in
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the thin dielectrics for the material properties €.=2.5, up=1.0.
However, a transition surface wave type of field does exist under cutoff
conditions. From plots of the equivalent currents in the aperture it is
readily apparent that this field has the propagation constant of free
space and becomes more significant as cutoff of the dominant surface
wave is approached. For a depth of ,15)x and .10) it is less ohvious.
For this reason a "surface wave" with propagation constant=k will be
employed in the hybrid basis solution for the recessed cavity of
depth=.15x, even though the dominant surface wave is actually cutoff,

Figure 4,14 compares the hybrid basis solution to the modal basis
solution for the monostatic scattered electric field from a loaded
recessed cavity of width=5)x and depth=.05\. The modal basis solution
employs 20 modes; the CPU time was 1 minute 7 seconds. Because of the
fundamental similarity between the modal basis solutions for the hard
and soft polarizations, the CPU times are nearly identical for a given
number of unknowns. The hybrid basis solution employs only a forced
wave. However, recall that additional exponential terms are employed so
that each basis function will meet the edge condition. Thus, for a
basis function of the form given by Equation (3.27), a value of 0 must
he chosen so that the basis function will go to zero in an appropriate
manner as |x|+a. A suitable form for O is

0 =k - js . (4.3)

where k is the free-space wavenumber, and s is determined empirically.
The value of s used in Figure 4,14 and the following figures is

s = 6 (4.4)
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However, numerical experimentation has shown that the hybrid basis
solution is quite insensitive to specific value of 0. Any choice of 0
which takes the basis function to zero within a fraction of wavelength
of the edge is suitable. Note that the exponential transition terms
used in the hybrid basis solution for the hard polarization were not
found to be useful for the soft polarization, except as a means of
enforcing the edge condition.

Recause there is only one unknown in the hybrid basis solution
shown in Figure 4,14, the CPU time is only 20 seconds.

The agreement between the hyhrid hasis and modal basis solutions in
Figure 4,14 is very good except near grazing incidence. This disparity
is more clearly illustrated in the next set of figures. Figures 4,15 to
4.18 compare the equivalent aperture currents and bistatic scattered
field patterns of the two solutions for angles of incidence ¢'=90° and
$'=10° and a cavity of depth=,101, Again, only the forced wave is
employed in the hybrid basis solution, and 20 modes are employed in the
modal basis solution: the CPU times are 8 seconds and 50 seconds
respectively. The agreement for ¢'=90° is very good, although from
Figure 4,15 one can see that a weak field is present in addition to the
forced wave portion of the total field. This additional field is more
significant for ¢'=10°, as can be readily seen in Figure 4.17. The
corresponding bistatic scattered field patterns, shown in Figure 4,18,
display good agreement except for the region of grazing incidence,
¢'<30°, Attempts to improve the solution in this region by the addition
of a surface wave with propagation constant k and/or the inclusion of
exponential transition terms were unsuccessful.
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Figures 4,19 to 4,22 show the monostatic scattered field results
for cavities of depths .10x, .15), .20) and .25 A. Inaccuracies in the
grazing incidence region are plainly visible in Figures 4.19 and 4.20.
Inclusion of a surface wave type of field in the hybrid solution for
b=.15) improved the solution which employed a forced wave only,
especially for normal incidence. However, the grazing incidence
solution was only slightly improved. The hybrid solutions for b=.20x
and .25X employ a forced wave and true surface waves, since the dominant
surface wave mode is no longer cutoff. Figures 4,21 and 4.22 show the
poor agreement between the hybrid and modal hasis solutions.

Fxamination of the bhistatic scattered field patterns for these
geometries shows fairly good agreement for normal incidence, but very
poor agreement for grazing incidence. Attempts to improve the hyhrid
solution by the use of transition terms occasionally yielded better
results. However, as was true for the hard polarization, a consistently
accurate set of bhasis functions was not found for the deeper cavities.
In short, a fairly accurate and very efficient hybrid solution for the
soft polarization was found for cavities with depths < .10\ and of
arbitrary width.

An alternative hybrid scheme for both the hard and soft
polarizations would be to use the proper transition functions associated
with the phenomenon of edge diffraction within the surface wave
transition region., Such functions, involving Fresnel integrals and
terms of the type p=3/2, could be determined from asymptotic study of

an appropriate canonical problem. However, use of these transition
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Figure 4.19. Backscattering by a wide and shallow cavity.
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Figure 4,20, Backscattering by a wide and shallow cavity.
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—

functions in a hybrid moment method solution would greatly increase the
CPU required to compute the Z;,, assuming Galerkin's method is employed.
Use of point-matching may alleviate this problem.

Next, we consider the effects of loading on the scattering patterns
of the wide shallow cavities. Comparisons will be made using only
results from the modal basis solution, Considering first the hard
polarization, Figures 4.23 through 4,27 show the backscattered field
magnitude for a cavity of width=5) and depth=.1)x and for various
dielectric loading; in all cases up=1. These figures should be compared
with Figure 4,10 for which €,=2.5 and for which a significant surface
wave is present. The backscatter of an unloaded cavity, shown in Figure
4..3, shows significantly less backscatter aleng grazing angles due to
the lack of surface wave. A lossy dielectric, €p=2.5-j.25, is shown in
Fijure 4.24. Again the most significant differences compared to Figure
4,10 occur for grazing angles. Figure 4.25 is for a dielectric constant
er:5 and displays no significant differences in backscatter. However,

F gures 4.26 and 4.27 are for larger dielectric constants, €.=10 and

e, =15, respectively, and show a pronounced decrease in backscatter along
g azing angles as compared with Figure 4.10. This effect is due to the
destructive interference of surface wave reflections and will,

therefore, vary with the cavity width.
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Figure 4.23. Backscattering from a wide and shallow cavity.
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Figure 4,24, Backscattering from a wide and shallow cavity.
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Figure 4.27. Backscattering from a wide and shallow cavity.

Figure 4.28 shows the backscatter from a cavity of width=9.5x and
depth=,25) with a dielectric constant €,.=2.5, This geometry is easily
shown to be surface wave resonant (8,=8.599 from Table 4.1); however,
this is the case is readily apparent from the plot. Figure 4.29
dramatically displays the effect of adding loss to the dielectric,
€r=2.5-3.25, thus removing the resonance by both altering the resonant
frequency and damping the surface waves.

Consider now the effects of loading on the backscatter patterns for
the soft polarization. Figures 4,30 through 4,34 are for a cavity of
width=5x and depth=,1) and for various types of dielectric loading.

These should be compared with Figure 4.19 for which €.=2.5 and for which
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Figure 4,28, Backscattering from a wide and shallow cavity.
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Figure 4.29. Backscattering from a wide and shallow cavity.

69




a significant surface wave is not present. Figures 4.30 and 4.31 show
the backscatter of an unloaded cavity and of a cavity containing a lossy
dielectric with €p=2,5-j.25, respectively. Neither of these show much
difference when compared with Figure 4.19 simply because of the lack of
surface wave in each case. The same rationale applies to Figure 4.32
for which €p=5, even though the surface wave is only slightly below
cutoff. For Figure 4.33, for which er=10; the surface wave mode (or
modes) are above cutoff as is readily apparent from the backscatter
pattern. Figure 4.34, for which €.=15, shows a decrease in backscatter
compared with Figure 4.33 for near-grazing angles, although not nearly
as pronounced as was observed for the hard polarization.

Figure 4,35 shows the backscatter from an unloaded cavity of
width=5A and depth=.25\. Comparing this with Figure 4,22, for which
€r=2.5 and for which a surface wave is present, the significance of the

surface wave at grazing and near-grazing angles is readily apparent.
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Figure 4.30. Backscattering from a wide and shallow cavity.
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Figure 4.31. Backscattering from a wide and shallow cavity.
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Figure 4.34, Backscattering from a wide and shallow cavity.
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Figure 4,35, Backscattering from a wide and shallow cavity.
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V. CONCLUSIONS

Two ef/icient moment method solutions have been developed for the
scattering of an electromagnetic plane wave from a 2-D rectangular
cavity recessed in a perfectly conducting ground plane and loaded with a
homogeneous lossy or lossless dielectric. Integral equations for the
equivalent magnetic current in the cavity aperture are solved by
Galerkin's method for the hard and soft polarizations independently.

One of the solutions termed a modal basis solution, expands the
equivalent magnetic current in a set of parallel plate waveguide modes
which constitute entire domain basis functions over the whole aperture.
This solution requires 3-4 unknowns per aperture wavelength, versus
10-20 unknowns per wavelength when using pulses or piecewise sinusoids.
In addition, a portion of the cavity Green's function contribution to
the impedance matrix elements was summed into closed form resulting in a
highly convergent representation. When compared with a
pulses/point-matching solution for the hard polarization, the modal
basis solution was found to be several times as efficient without loss
of accuracy. At present, this solution is limited to geometries with
aperture widths < 257 (requiring 75-100 unknowns) as a matter of
computational efficiency; the required CPU is independent of cavity
depth and Tloading.

A second moment method solution, termed a hybrid basis solution,
was developed specifically for wide shallow cavities with enough loading

to support at most one surface wave mode. The hybrid basis solution
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employs entire basis functions and Galerkin's method, as does the modal
basis solution, but expands the equivalent magnetic current as a sum of
forced wave, two surface waves (if present) and several transition
waves, The transition waves are exponential functions chosen to be most
significant near the edges of the aperture in the surface wave
transition region. This representation was found to yield accurate
results for the hard polarization for cavity depths < .10) and widths >
several A with the use of just 3-4 transition waves. Thus, since only
about 10 unknowns are required for any aperture width and the basis
functions are not significantly more complicated than are the moda)
basis functions, the hybrid basis solution is an extremely efficient
solution for wide shallow cavities. For the soft polarization the
surface wave mode was not present for cavity depths < .10r and for the
choice of dielectric material considered. Also, the transition waves
were found to not be appropriate for this polarization. Thus, only the
forced wave plus two exponentials, chosen so that the forced wave would
meet the proper edge condition, made up the hybrid basis functions.
Fairly accurate results were obtained for cavity depths < .10 X and
widths > several A, except near grazing angles of incidence. Again,
thi_. hyb=id basis solution is extremely efficient,

The analytical technigues presented here should prove useful in the
design of surface wave antennas and in determining the RCS contribution
from such structures as well as from loaded and unloaded notch
structures. Future research could include modification to the cavity

Green's function to accomodate, for example, impedance side walls.
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Improvements to the hybrid basis solution, specifically, may be made by
choosing more appropriate transition wave basis functions. Such basis
functions may be obtained from a UTD analysis of an appropriate
canonical surface wave diffraction problem, or perhaps by using many

pulses or piecewise sinusoids near the edges of the aperture.
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APPENDIX A
DERIVATION OF THE INTEGRAL EQUATIONS

The integral Equations (2.2) and (2.4) for the region I (y>0) and
region Il (y<0) fields, respectively, may be derived from Green's second
identity for scalar fields and the equivalence theorem. In two
dimensions Green's second identity has the form [16]

3 Yy
LI (van - ¢ 3n) dt =[] (¥92¢ - ¢92y) ds (A.1)
3
where ¢ and ¢ are scalar fields and s is a surface bounded by the
contour L. Note that this identity is a statement of reciprocity for
the two fields.

Let ¢ be the scalar field, ug, defined by
h

(
ug (5) = | °? , (A.2)

and let ¢ be the appropriate Green's function, Gg(5,0'). To derive
h
integral equations from (A.1) we must consider the wave equations and

boundary conditions satisfied by u and G. The scalar fields satisfy

_ Jwu Jz

(v?. + kz) Ug (p) = . (A.3)
h Jjwe Mz
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where J,, M, are impressed sources located in region I as shown in
Figure A.1. On perfect conductors, i.e., paths L. and C, the fields

must satisfy the boundary conditions

Us ‘

Lo (A.4)
dup
9 L

where L = LC or C and n is the interior normal along L. The Green's
function satisfies

(VZ + kZ) GS (5:5') = -4 (595.) s (A's)
h

with boundary conditions chosen so as to simplify (A.1) as much as
possible,

To facilitate determination of the Green's function the original
problem of Figure A.1 is converted into an equivalent problem by
employing the equivalence principle. A perfectly conducting sheet is
placed in the aperture, and on this sheet equivalent source
distributions are placed on either side. Then, for the equivalent
problem in region I, application of Green's identity along with

Equations (A.3), (A.4) and (A.5) yields

dug 3Gg
h h
Li (Gﬁ (,0') 3, (6") - us (') 357 (5,0")) de’
= 565 (5.8 {9 Yo} st +ug (5) (A.6)
S; h jue Mg h
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Figure A.1. Geometry for derivation of integral equations.

Choosing the boundary conditions

| a6, |
| 3n f = 0 on La .
{ Gs {

Gg becomes the half-space Green's function
h

65 (xayix'sy') = =378 H2) (k JxxVZ + (y-y"02)
h

+ j/4 HéZ) (k V(x=-x")2 + (y+y')2)
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Assume the sources in region I to be z-directed electric and magnetic
line sources for the soft and hard polarizations, respectively, located
at (xqg,yg). Then from Figure A.1 and Equations (A.7) and (A.6),
Equation (A.6) becomes

- : - - a ( ) " (D.O')
ug (p) = u; (p) + ug () = [ s l dx’
h h h -a | dup . i
'?‘* (0') G (pye") | J y=0+
(A.9)
where
- E0 (2)
us (6) = { uy | H (k [x=x )2 + y-y,)?) (A.10a)
ro,- 'E° (2)
urs‘ (8) = [y } H, fx )2+ yry )?) . (A.10n)

and where ug is given by Equation (A.8). In this work the incident
field is assumed to be (locally) a plane wave, thus the asymptotic form
of Equation (A.10) is used, This completes the derivation of the
integral equation for the fields in region I,

For the equivalent problem in region II, application of Green's
identity and Equations (A.4) and (A.5) (there are no sources in this

region) yields

dug(5') 264
[ (Gg (p,0") 3 - ug (p') 37 (p,0')) do
La h h
-ug (). (A.11)
h
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Choosing the boundary conditions as given by Equation (A.7) Gg becomes

the Green's functions for the enclosed cavity (derived in Appendix B).

Applying the boundary conditions Equation (A.11) becomes

uc (p) =3 dup,
h 2 |3y () 6, (5

(A.12)

yl=0-

Where Gﬁ is the cavity Green's functions. This completes the derivation

of the integral equation for the fields in region II.




APPENDIX B
DERIVATION OF THE CAVITY GREEN'S FUNCTIONS

The cavity Green's function for the geometry of Figure 2.3 is
easily derived by the method of separation of variables. The Green's

functions satisfy

tha 32 ‘
(3xZ + 3yZ + K2 e_u ) Gg (x,y3x',y') = -8(x-x') 8{y-y") (R.1)
h

with the boundary conditions

| 6g *‘
I 3Gp, ) =0 onC , (8.2)

| an

where C is the perimeter of the cavity defined by x=-a, x=a, y=-b, y=0
and 8 is the interior normal on C., Consider the separation of variables
[201

Gg (x,y3x',y') = K Xg (x,x"') Yo (y,y') . (R.3)
h h h

where K is a linear operator such tha* Equation (R.3) is a solution to
Equation (B.1). Substituting (B.3) into (B.1) suggests the ordinary

differential equations

2
(B2 + 2 %s (xx') = =8(xx") (8.4)
h
32 ) [}
(32 *+ 2 Yg (y,y') = -8(y-y") . (R.4h)
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with the boundary conditions

Xs
dXp | =0 on x=-a, x=a
_dx_

Q.

3
-~
u

o

on y=-b, y=0 ,

and where

2
Ao * Ay kS el

Note that k is the free-space wavenumber,

Eigenfunction representations for X and Y are given by [21]

¢m(x) ¢m(X')

X(x,x'; 2 ) = -g Xy - Am
‘ Valy) ¥nly")
Y s a,) = - -

where the {¢_(x)}, {v,(y)} are complete sets of orthonormal

eigenfunctions arising from

d2
(@x7 + 2] o,(x) =0

q2
(dyz + 2,) v, ()

1
o

(R.5a)

(B.5h)

(B.6)

(B.7a)

(B.7h)

(B.8a)

(B.8b)

and the appropriate boundary conditions. Consideration of the form of

Equation (B.7) leads to the choice of linear operator
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K=x [ ...dx (B.9a)
cx
or
K = « f . dx (B.gb)
C Y
y
For this problem the constant x is easily shown to be
-1
X = 773 (8.10)

Note that the paths of integration, Cy and Cy, encircle the
singularities of X and Y, respectively. From Equations (B.7a) and

(B.9a), Equation (B.3) can be shown to reduce to

GOxaysx'sy') = 1 o (x) op(x') = Y(y,y's2p) (B.11a)
m

If, instead, Equations (B.7b) and (B.9b) are used the result is

GOGysx'uy") = L voly) vp(y') = XOGx"5a) (B.11b)
n

Consider first the form of the Green's function given by Equation
(B.11b). The orthonormal eigenfunctions arising from Equation (B.8b)

with the boundary conditions

“4s.p "
Mh,g | = 0 on y=-b,0 (B.12)
_ 9y
are
TR T
v y b sinTp
S»t - , (8.13)
| ¥p oo (¥) /2 Lny
L_ ’ _l EEE; Cos "p
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where ¢ is an integer and e, is given by Equation (2.13c). In
Equations (B.11b) X(x,x') is determined from Equations (B.4a) and (B.6)

with

A= B2 . (R.14)

The solution for X(x,x') is constructed in two intervals and the
properties of the Green's function at x=x' are used to determine the

arbitrary coefficients involved. That is,

' U(x<;xy) . T(x>;Ay)
X(X,X ;Xy) = N(T,U) (8.15)

where U and T are independent solutions of

d? 22n2

(qxz + (k2 €. U, - +52)) | gg:g } =0 (B.16)

and the constant W is (for Equation (R.16))

W(T,U) = T(x) ' ({x) = T'(x) « U(x) . (R.17)

Solutions to Equation (B.16) are

| Ug (x) Tsiny(a+x)
= (B.18)
_Ts(x)_| !_giny(a-x)_|
for the soft polarization and
“Un(x) “cosy({a+x)
h - (R.19)
Thix) | | cosv(a-x) |

for the hard polarization, where vy is given by Equations (2.13a) and

(2.13b). The constant W is
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Wg = t vy sin2va (B.20)
h

for the soft and hard polarizations, respectively. From Equations
(B.18), (B.19) and (B.20), Equation (B.15) may be written in the form

XR (x,x') = :2%5212 [cosv(2a-|x-x"'|) ¥ cosv(x+x')] . (B.21)
Finally, (B.11b), (B.13) and (B.21) yield the results given by Equations
(2.12a) and (2.12b).

Consider now the form of the Green's function specified by
Equation (B.1la). An orthonormal set of eigenfunctions is determined
from Equation (B.8a) with appropriate boundary conditions. Equation
(B.4b) is then solved by the same method used to solve Equation (B.4a)

in the previous derivation. The final results for the Green's functions

are
-1 T cscyb Ln . A .
G (x,y3x"sy') = 73 21 Y sin 77 (a-x) sin 73 (a-x')
L=
«[cosy(b~]y-y'|) - cosy(b+y+y')] (B.22a)
Vo -1 cscyb L L .
Gx,ysx'sy') = 23 1 &5y c0s 2a (a=x) cos 73 (a-x')
£=0
«{cosy(b-ly-y'|) + cosy(b+y+y')] (B.22b)
where
h 333 2ak
V/kz CITIRE (73) , & <=3 Re (er ”r) (B.23a)
Y = n 2 2ak
-j v/(fg) - k? €. W , £ > 71 Re (sr ur) . (B.23b)
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APPENDIX C

DERIVATION OF Z,

In this appendix we derive expressions for the elements of the
impedance matrices of the solutions presented in this thesis. Consider

first the hard polarization. From Equations (3.8) and (2.7), let

N L TN ) . : . :

. _£ _g [§/2 Hy o (klx=x"]) = e G (x,x")] m(x') w(x) dx'dx
(c.1)

where m=M_and w=W_ and G, is given by Equation (2.12b). Now consider

just the first term in Equation (C.1). Let

a a (2)
Z, = [ [ 3/ Hy (k|x=x"']) m(x"') w(x) dx'dx . (c.2)
-3 -a

This expression may be reduced to a single integral over the Hankel

function through the coordinate rotation (the so-called Popovich

transformation)
x=-x"'
u = /? (Co3a)
x+x'
U' = fz- . (C.3b)

The resulting integral is

Y2a /2a-|u] (2) u'-u u'+u
Z,= | / ir2 M, (V2kjul) m{ /7 ) w( 77 ) du'du (C.4)

-/;; 2a+|ul
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From Equations (3.13) and (3.30) we see that the basis functions and

weighting functions are simply exponentials. Thus, let

m(x') = e3fX’ (C.5a)
w(x) = ejgx . (C.5b)

Substituting Equations (C.5) into Equation (C.4) and evaluating the

integral over u',

sin[(f+g)(a-u)]
f+g

du . (C.6)

a
Zu =4j | Héz)(Zku) cos(f-q)u
0

For ku near zero the small argument form of the Hankel function [17],
2 Yke

ng)(kp) =l-jzean(3) , k>0 (C.7)

where vy = 1.781, is used so that the singularity at the origin may be

integrated out. Substituting (C.7) into (C.6) for u < .05 yields the

approximate result,

) Au
| 8u au, sinl(f+g)(a-3) 2 ykAu

Z, . 4jcos| (f-9)77] - fig * [1-i7en ()] au

For ku large (2ku>5) the large argument form of the Hankel function, as
given by Equation (2.8.1), is used to express most of Equation (C.6) in

terms of the complex error function [17],

2 T 42
erfz =77 [ e v oat R (C.8)
0
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by employing the relations

-YX

e
[ F—dx =/n/x erf /yx - ' (C.9a)

_erf/yx /X e VX

[ /x e dx = /a/v . -7y . (C.9b)

For f+g # 0 the relevant portion of Equation (C.6) becomes

-jeku

|a 1 3 . ae ; ;
o[ f+g)a -j2f -
. a e Jku . . )
_e-i(f+g)a 014 —— . (32 4 eIy |, (C.10)

which is easily evaluated with Equation (C.9a). For f+g=0 the
corresponding result is
e—JZku

la ] a . .
. o fe -i(f-
o T BV, G T (T

(C.11)

which is easily evaluated with Equations (C.9a) and (C.9b). The
remaining portion of the integration in Equation (C.6), from u=.05 to
u=0.40, is evaluated numerically by the trapezoidal rule.

Efficient code for computation of the Hankel function and complex
error function, as well as an efficient program for complex matrix

inversion, were provided by Prof. J.H. Richmond. These routines are

discussed in [12].
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Next we consider the second term in Equation (C.1.), denoted Z,

where

a a
Z) = -¢ [ | Gy (x,x") m(x") w(x) dx'dx . (C.12)

F-.a-a
Substituting Equations (C.5a), (C.5h) and (2.12b) evaluated at y=y'=0
into Equation (C.12), the resulting double integral may he evaluated in

a straight forward manner. The resulting sum is

er sin(f+gla E 1 1
Z, = 4§ * 2.f2
L f+g 2.:0 elo Y 'f
o csc2ya 1 - sin(y+g)a
-de, 210 €20Y y2-f2 |_sin(y+f)a Y+g
e sin(y-g)a™|
~ sin(y-f)a -9 | (C.13)

where vy is a function of 2 and is given by Equation (2.13). The first
sum in this expression may he put in closed form through the use of the

relation [22]

w 1 1 L
221 w2-a2 = 242 ~ 24 COt ma . (C.14)

Thus, the first sum in (C.13) becomes

= 1 1 b cot(b / kferur-fz)
zl €0 ~ y2-f2 2 /k2 u -2 . (C.15)

2= €p

For the cavity depths of interest in this work (< 1/4 wavelength) only a

few terms of the second sum in Equation (C.13) are needed for
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convergence, regardless of cavity width. Thus, with the use of Equation
(C.15) a highly convergent formulation of Z| has been achieved.

An equivalent expression for [, may be obtained by uSing the
alternative form of the cavity Green's function given by Equation
(B.22b). Substituting this expression evaluated at y=y'=0, along with

Equations (C.5a) and (C.5b), into (C.12) yields the result

€Er ®  cotyb sin(f+p)a sin{g+p)a
=—z§o €0 Y ° ?( ) ‘(1)2 gipp

v e - .
. s1;£g p)a ‘ N sw:fp p)a {_é1nég;p) v (- 1)2 1n(g pla_ ]

(C.16)

where v is given by Equation (B.23) and

PR
=33 (C.17)

No convenient method was found for reducing any portion of the sum in
Equation (C.16) to closed form, making this representation of Z; far
less convergent. The number of terms required in the summation is
directly proportional to the width, and is typically equal to 10-15
times the width in wavelengths.

Now consider the soft polarization. In view of Equations (3.8) and

(2.8) let
i a a 32 1
Z, = % [ | 3 Héz)(k (x=x")< 4y m(x') w(x) dx'dx (C.18)
-a -2 y = 0t
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where m(x') and w(x) are basis and weighting functions such that

(C.19a)
(C.19b)

i+

=z 0 .

a)_
a)_

- (
w (t
From the differential equation which the 2-D half-space Green's function

satisfies, and noting that y#y', we obtain the relation
32 - - a2 - .
377 M2 (5511 = (5 + @) WD) (k)5 (c.20)

where |p-p'| is given by Equation (2.3). Substituting this into
Equation (C.18) we then integrate by parts to remove the derivatives on
the Hankel function. The end-point terms reslting from this integration
can be shown to vanish from a consideration of the ege condition and the
small argument of the Hankel function, as given by Equations (2.14) and

(C.7), respectively, and from the relation

lim x®enx =0 ,t>0 . (C.21)

x+0
The resulting form of 7, is

3 a a
Z, = -k2 %’ | Héz)(klx-x'l) m(x') w(x) dx'dx
-a -2

$ a a
v 3 01 WP lxex ) g () 3% (0 dxtdx . (€.22)
-a -a

From Equations (3.15) and (3.22) it is apparent that the basis and
weighting functions are a sum of exponentials. Thus, the evaluation of
L, for the soft polarization is fundamentally the same as for the hard

polarization,
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Finally, consider the second term in Equation (2.8). Let

1 a a 32
I, = _£ _g [5yay™ 6 (x,y3x",y" )] {m(x" Jw(x)dx"dx (€.23)
y'=0" '
- ly =0--

where m(x') and w(x) satisfy Equation (C.19). Substituting Equation

(2.2) into (C.23) yields

nZ  ® csc2ya L gy’
i ;st-zgl Yy %% cos by cos hy .« 1 (C.24)

where

a a
I = [ [ [cosy(2a-|x-x"]) - cosy(x+x')] m(x')w(x) dx'dx (C.25)
-a -a

and vy is a function of & as given by Equation (2.13). To obtain a
convergent summation Equation (C.25) must be integrated by parts, which

yields the result

1 a a am(x') aw(x)
1 =37 [ [ [cosy(2a-]x-x"]) + cosy(x+x')] —3x 5% dx'dx
-3 =a
2sin2ya 2
2 nowl) dx (€.26)
-a

Reecalling that m(x') and w(x) are a sum of exponentials for this
polarization, we substitute Equations (C.5) into Equation (C.26) and

evaluate the integrals in a straightforward manner. Employing the

relation
® 1 X Lny’
2 €0 b €05 Hy cos hy = §(y-y') (C.27)
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along with Equation (C.14), and noting that y*y', Equation (C.24)

becomes
0 f2g % csc2va __1 1
o= - 7537121 2 TN YT g
. sin(vy+g)a . sin(v-g)a
« [sin(v+f)a ‘“;é@fii‘“ - sin(y-fla ~yg~ ] , (C.28)
where

o 2 51n(f+9)a |"a
L~ up  ftg LM

~N
]

ccot b /kzerur-fi - (1 + %'/kzeru cot b /k2 ) (C.29)

A second form for Z| is obtained by employing the alternative form
of the cavity Green's function given by Equation (B.22b). Substituting

this expression into Equation (C.23) and noting that y*y', Z| becomes

l o
Z = 2 ycotyb » 1 , (C.30)

where

Ia Ia sin p(a-x') sin p(a-x) m(x') w(x) dx'dx (€.31)
-a -a

and p is given by Equation (C.17). Integrating by parts, (C.31) becomes

I f cos p(a-x') cos p(a-x) a?ix ) 3§§x) dx'dx . (C.32)
-a -a

Substituting Equations (C.5) into (C.33) and evaluating the double

integrals, Equation (C.32) is substituted into (C.30) and Z; becomes
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fg < ~ycotyb | sin(f+p)a g sin(g+p)a
I, =%ra 221 p? fop o | (517 Tgep
sin(g-p)a sin(f-p)a |_Sin(gfp\a % 1n(g pla
* Tgep + + (-1) ’

f-p l g+p

(C.33)

where vy is given by Equation (B.23) and p is given by Equation (C.17).
Equations (C.28) and (C.33) possess the same convergance properties

that the corresponding hard polarization equations have. Thus,

Equations (C.28) and (C.29) yield a far more convergent representation

than does Equation (C.33) for wide cavities.
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